Chapter 7

Exponential and Logarithmic Functions

7.1 - 7.2

General Equation:

 $\mathbf{Y} = \mathbf{ca}^{x}$

c = initial amount

y = final amount

a = growth or decay factor If a > 1, it is growth, if a is between 0 and 1, it is decay

a = (1 + r) growth, (1 - r) decay

x = time

Exponential Growth:

$$y = a(1 + r)^{t}$$

a = initial amount

r = percent increase written as a decimal

1 + r = growth factor

Exponential Decay:

$$y = a(1 - r)^{t}$$

a = initial amount

r = percent decrease written as a decimal

1 - r = decay factor

Compound Interest:

Amount

rate of interest

$$A = P(1 + \frac{r}{n})$$

rate of interest

time in years

Principal

number of times per year, interest is compounded

$$A = P (1 + r/n)^{nt}$$

P = Principal, initial deposit, starting amount

r = annual interest rate, written as a decimal

 \mathbf{n} = compounded n times per year (annually = 1, biannually = 2, quarterly = 4, monthly = 12)

t = time in years

A = the amount in the account after t years

Expression	Growth or decay		Growth or decay rate	
.02 (1.6) ^x	Growth(1 +.6)		60%	
5/4(4/5) ^x	Decay (1 - 4/5)		20% (1/5)	
(2.6) ^x	Growth(1+ 1.6)	160%		
1.5(.06) x	Decay (106)		94%	

- \Box A = 1 (+ or -) r A > 1 = growth factor, A between 0 or 1 is decay
- ☐ If it's growth, it's going to be plus
- ☐ Convert growth, to percentage
- ☐ If it's decay, subtract given % rate from 1 , (1 r) to determine percentage of decay
- ☐ To find a graph, use calculator or plot years and values and record data, show a slope of decay (down) or growth (up)

Natural Base e:

- Natural Base e is irrational like pii
- e is approx. 2.71828
- Used in the continuous interest formula
- Use 2nd division to get e, or 2nd LN to get e

 $A = Pe^rt$

A= Amount

P = Principal

R = rate

t = time

Ex. How much in account if \$2000 invested at 9% for 15 years compounded continuously?

$$A = 2000e^{(.09*15)} = $7714.85$$

Using e in exponents:

 $y = ae^{rx}$

y = final amount

a = initial amount

e = e

r = if + or > than 0 it's growth, if it's less than zero, then it's decay

x= time

examples:

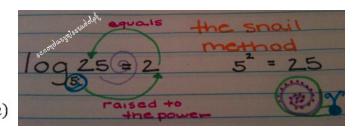
$$2e^{2/6e} = e/3$$
 (simplify)

$$e^{x+1} * e^{2x-6} = e^{3x-5}$$
 (combine like terms)

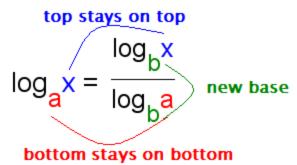
$$e^{5x} / e^{3} = e^{5x-3}$$

Logarithm of y with base b:

$$y = b^{x}$$
 (Exponential form)
 $x = \log_{b} y$ (Logarithmic form)



Change of Base formula:



Divide top by bottom.

Examples:

Solve log₂4.

$$\log_2 4 = \frac{\log_{10} 4}{\log_{10} 2} \approx \frac{0.602060}{0.301030} \approx 2$$

Check
$$2^2 = 4$$

Solve log₅22.

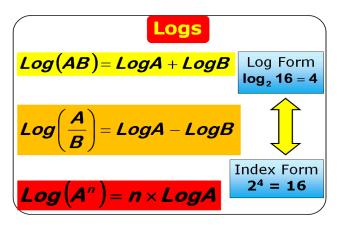
$$\log_5 22 = \frac{\ln 22}{\ln 5} \approx \frac{3.091042}{1.609438} \approx 1.920573$$

Check
$$5^{1.920573} \approx 22.00001 \approx 22$$

Properties of Logarithms:

Property	Definition	Example
Product	$\log_b mn = \log_b m + \log_b n$	$\log_3 9x = \log_3 9 + \log_3 x$
Quotient	$\log_b \frac{m}{n} = \log_b m - \log_b n$	$\log_{\frac{1}{4}} \frac{4}{5} = \log_{\frac{1}{4}} 4 - \log_{\frac{1}{4}} 5$
Power	$\log_b m^p = p \cdot \log_b m$	$\log_2 8^x = x \cdot \log_2 8$
Equality	If $\log_b m = \log_b n$,, then $m = n$.	$\log_8(3x-4) = \log_8(5x+2)$ so, $3x - 4 = 5x+2$

Expanding and Condensing Logarithms:



Rules for Expanding:

- 1. Count the number of terms (big #s and letters)
- 2. Rewrite the log base for as many terms there are
- 3. Place # in back of log, letter after log, and exponents in front of log with the corresponding letter.
- 4. Square roots turn to fractional exponents.
- 5. To undo multiplication, add, to undo division subtract.

Example:

$$log_5(3xyk) = log_5(3) + log_5(x) + log_5(y) + log_5(k)$$

Rules for condensing:

- 1. Count the number of times Log is written, that's the number of terms you'll have.
- 2. Determine what process to use: Adding terms, multiply. Subtracting terms, divide.
- 3. Rewrite log and list all terms behind it. If there are #s in front of log, change back to exponents. Fractions can turn back to square roots or stay as fractional exponents.

* Big Rule:

- To undo $\sqrt{\ }$, put value to exponent of $\frac{1}{2}$.
- To undo ³√, put value to exponent of ½.
- To undo ⁿ√, put value to exponent of 1/n.
- a number raised to the -1, is written as a fraction. Ex 6 $^{-1}$ = $\frac{1}{6}$

Solving Exponential and Logarithmic Equations

* Recognize what to do to get x alone, when x is in a different location.

Example:

1. $x^3 = 57$ (what number to the 3rd power = 57) Raise each side to 1/3 power to get x to the 1st power.

2. 3
x
 = 82 (3 to what power = 82) $\log_{3} 82 = x$

3. 3
5
 = x (3 to the 5th power = 243) $\log_{3} x = 5$

Example:

 $2 + 3^{x-5} = 18$ Isolate base to an exponent on one side

$$3^{x-5} = 16$$
 Convert to log form

 \log_3 16 = x - 5 Change of base formula

$$log(16)/log(3) = x - 5$$
 Solve for x (divide, and add 5)

$$7.524 = x$$

Example:

 $2 \log_4 (x-2) = 3$ Get logarithm alone, divide by 2.

 \log_4 (x-2) = 3/2 Convert to exponential form.

4
$$^{3/2}$$
 = x -2 Solve for x.

$$10 = x$$

One to one property:

If
$$a^x = a^y$$
, then $x = y$

Solve 2
$$x+5 = 2$$
 Solve as linear equation because bases are the same.

$$x + 5 = 3x - 1$$
 Becomes linear. Solve for x.

$$x = 3$$

If
$$\log a$$
 of $x = \log a$ of y

then x = y, if log bases are the same.

Example:

$$\log 2 (x+4)^2 = \log 2 64$$

$$(x + 4)$$
² = 64 Solve as a quadratic with +/-

$$x + 4 = +/- 8$$

x = 4, or -12 Make sure to double check, (-) solutions may not satisfy the log.

Example:

2 $^{X+1}$ = 8 $^{X-4}$ Rewrite it to make bases the same. Raise 2 and the factor to the 3rd power

$$2^{X+1} = 2^{3} (3x-12)$$

$$x + 1 = 3x - 12$$
 Solve for x.